Thursday, November 29, 2012

Sucesión de Fibonacci


Saltar a: navegación, búsqueda
Gráfica de la sucesión de Fibonacci hasta f_{10}
En matemáticas, la sucesión de Fibonacci (a veces mal llamada serie de Fibonacci) es la siguiente sucesión infinita de números naturales:
0,1,1,2,3,5,8,13,21,34,55,89,144,233,377
\ldots \,
La sucesión inicia con 0, y a partir de ahí cada elemento, es la suma de los dos anteriores(0,1,1,2,3,5,8...)
A cada elemento de esta sucesión se le llama número de Fibonacci. Esta sucesión fue descrita en Europa por Leonardo de Pisa, matemático italiano del siglo XIII también conocido como Fibonacci. Tiene numerosas aplicaciones en ciencias de la computación, matemáticas y teoría de juegos. También aparece en configuraciones biológicas, como por ejemplo en las ramas de los árboles, en la disposición de las hojas en el tallo, en la flora de la alcachofa y en el arreglo de un cono.

Índice

Historia

La sucesión fue descrita por Fibonacci como la solución a un problema de la cría de conejos: "Cierto hombre tenía una pareja de conejos juntos en un lugar cerrado y uno desea saber cuántos son creados a partir de este par en un año cuando es su naturaleza parir otro par en un simple mes, y en el segundo mes los nacidos parir también".1

Número de Mes Explicación de la genealogía Parejas de conejos totales
Fin del mes 0 0 conejos vivos. 0 parejas en total.
Comienzo del mes 1 Nace una pareja de conejos (pareja A). 1 pareja en total.
Fin del mes 1 La pareja A tiene un mes de edad. Se cruza la pareja A. 1+0=1 pareja en total.
Fin del mes 2 La pareja A da a luz a la pareja B. Se vuelve a cruzar la pareja A. 1+1=2 parejas en total.
Fin del mes 3 La pareja A da a luz a la pareja C. La pareja B cumple 1 mes. Se cruzan las parejas A y B. 2+1=3 parejas en total.
Fin del mes 4 Las parejas A y B dan a luz a D y E. La pareja C cumple 1 mes. Se cruzan las parejas A, B y C. 3+2=5 parejas en total.
Fin del mes 5 A, B y C dan a luz a F, G y H. D y E cumplen un mes. Se cruzan A, B, C, D y E. 5+3=8 parejas en total.
Fin del mes 6 A, B, C, D y E dan a luz a I, J, K, L y M. F, G y H cumplen un mes. Se cruzan A, B, C, D, E, F, G y H. 8+5=13 parejas en total.
... ... ...
Fin del mes 12 ... ...
Nota: al contar la cantidad de letras distintas en cada mes, se puede saber la cantidad de parejas totales que hay hasta ese mes.
De esta manera Fibonacci presentó la sucesión en su libro Liber Abaci, publicado en 1202. Muchas propiedades de la sucesión de Fibonacci fueron descubiertas por Édouard Lucas, responsable de haberla denominado como se la conoce en la actualidad.2
También Kepler describió los números de Fibonacci, y el matemático escocés Robert Simson descubrió en 1753 que la relación entre dos números de Fibonacci sucesivos f_{n+1}/f_n se acerca a la relación áurea fi (\phi) cuanto más se acerque a infinito; es más: el cociente de dos términos sucesivos de toda sucesión recurrente de orden dos tiende al mismo límite. Esta serie ha tenido popularidad en el siglo XX especialmente en el ámbito musical, en el que compositores con tanto renombre como Béla Bartók, Olivier Messiaen y Delia Derbyshire la han utilizado para la creación de acordes y de nuevas estructuras de frases musicales.

Definición recursiva

Chimenea con la secuencia de Fibonacci
Los números de Fibonacci f_0,f_1,f_2,f_3,\dots quedan definidos por las ecuaciones
(1) f_0=0\,
(2) f_1=1\,
(3) f_n = f_{n-1} + f_{n-2}\, para n = 2,3,4,5,\ldots
Esto produce los números
  • f_0 = 0\,
  • f_1 = 1\,
  • f_2 = 1\,
  • f_3 = 2\,
  • f_4 = 3\,
  • f_5 = 5\,
  • f_6 = 8\,
  • f_7 = 13\,
Esta manera de definir, de hecho considerada algorítmica, es usual en Matemática discreta.

Representaciones alternativas

Para analizar la sucesión de Fibonacci (y, en general, cualquier sucesión) es conveniente obtener otras maneras de representarla matemáticamente.

Función generadora

Una función generadora para una sucesión cualquiera a_0,a_1,a_2,\dots es la función f(x) = a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+\cdots, es decir, una serie formal de potencias donde cada coeficiente es un elemento de la sucesión. Los números de Fibonacci tienen la función generadora
(4) f\left(x\right)=\frac{x}{1-x-x^2}
Cuando esta función se expande en potencias de x\,, los coeficientes resultan ser la sucesión de Fibonacci:
\frac{x}{1-x-x^2}=0x^0+1x^1+1x^2+2x^3+3x^4+5x^5+8x^6+13x^7+\cdots

Fórmula explícita

La definición de la sucesión de Fibonacci es recurrente; es decir que se necesitan calcular varios términos anteriores para poder calcular un término específico. Se puede obtener una fórmula explícita de la sucesión de Fibonacci (que no requiere calcular términos anteriores) notando que las ecuaciones (1), (2) y (3) definen la relación de recurrencia
f_{n+2}-f_{n+1}-f_n=0\,
con las condiciones iniciales
f_0=0\, y f_1=1\,
El polinomio característico de esta relación de recurrencia es t^2-t-1=0, y sus raíces son
t=\frac{1\pm\sqrt 5}{2}
De esta manera, la fórmula explícita de la sucesión de Fibonacci tendrá la forma
f_n=b\left(\frac{1+\sqrt5}2\right)^n+d\left(\frac{1-\sqrt5}2\right)^n
Si se toman en cuenta las condiciones iniciales, entonces las constantes b y d satisfacen la ecuación anterior cuando n = 0 y n = 1, es decir que satisfacen el sistema de ecuaciones
\left.\begin{array}{rcl}b+d & = & 0 \\ b\left(\frac{1+\sqrt5}2\right)+d\left(\frac{1-\sqrt5}2\right)&=&1\end{array}\right\}
Al resolver este sistema de ecuaciones se obtiene
b=\frac1{\sqrt5},d=-\frac1{\sqrt5}
Por lo tanto, cada número de la sucesión de Fibonacci puede ser expresado como
(5) f_n=\frac1{\sqrt5}\left(\frac{1+\sqrt5}2\right)^n-\frac1{\sqrt5}\left(\frac{1-\sqrt5}2\right)^n
Para simplificar aún más es necesario considerar el número áureo
\varphi=\frac{1+\sqrt5}2
de manera que la ecuación (5) se reduce a
(6) f_n=\frac{\varphi^n-\left(1-\varphi\right)^{n}}{\sqrt5}
Esta fórmula se le atribuye a Édouard Lucas, y es fácilmente demostrable por inducción matemática. A pesar de que la sucesión de Fibonacci consta únicamente de números naturales, su fórmula explícita incluye al número irracional \varphi\,. De hecho, la relación con este número es estrecha.

Forma matricial

Otra manera de obtener la sucesión de Fibonacci es considerando el sistema lineal de ecuaciones
\left . \begin{array}{rcl}
          f_{n} &=& f_{n} \\
f_{n-1} + f_{n} &=& f_{n+1}
\end{array} \right \}
Este sistema se puede representar mediante su notación matricial como
\begin{bmatrix}0&1\\1&1\end{bmatrix}\begin{bmatrix}f_{n-1}\\f_{n}\end{bmatrix} = \begin{bmatrix}f_{n}\\f_{n+1}\end{bmatrix}
Conociendo a f_0=0 y f_1=1, al aplicar la fórmula anterior n veces se obtiene
(7) \begin{bmatrix}0&1\\1&1\end{bmatrix}^n\begin{bmatrix}0\\1\end{bmatrix} = \begin{bmatrix}f_{n}\\f_{n+1}\end{bmatrix}
Una vez aquí, simplemente tenemos que diagonalizar la matriz, facilitando así la operación de potenciación, y obteniendo por tanto la fórmula explícita para la sucesión que se especificó arriba.
y más aún
(8) \begin{bmatrix}0&1\\1&1\end{bmatrix}^n=\begin{bmatrix}f_{n-1}&f_n\\f_n&f_{n+1}\end{bmatrix}
Estas igualdades pueden probarse mediante inducción matemática.

Propiedades de la sucesión

Al construir bloques cuya longitud de lado sean números de Fibonacci se obtiene un dibujo que asemeja al rectángulo áureo (véase Número áureo).
Los números de Fibonacci aparecen en numerosas aplicaciones de diferentes áreas. Por ejemplo, en modelos de la crianza de conejos o de plantas, al contar el número de cadenas de bits de longitud n que no tienen ceros consecutivos y en una vasta cantidad de contextos diferentes. De hecho, existe una publicación especializada llamada Fibonacci Quarterly3 dedicada al estudio de la sucesión de Fibonacci y temas afines. Se trata de un tributo a cuán ampliamente los números de Fibonacci aparecen en matemáticas y sus aplicaciones en otras áreas. Algunas de las propiedades de esta sucesión son las siguientes:
  • La razón o cociente entre un término y el inmediatamente anterior varía continuamente, pero se estabiliza en el número áureo. Es decir:
\lim_{n\to\infty}\frac{f_{n+1}}{f_n}=\varphi
Este límite no es privativo de la Sucesión de Fibonacci. Cualquier sucesión recurrente de orden 2, como la sucesión 3, 4, 7, 11, 18,..., lleva al mismo límite. Esto fue demostrado por Barr y Schooling en una carta publicada en la revista londinense "The Field" del 14 de diciembre de 1912. Los cocientes son oscilantes; es decir, que un cociente es menor al límite y el siguiente es mayor. Los cocientes pueden ordenarse en dos sucesiones que se aproximan asintóticamente por exceso y por defecto al valor límite.
  • Cualquier número natural se puede escribir mediante la suma de un número limitado de términos de la sucesión de Fibonacci, cada uno de ellos distinto a los demás. Por ejemplo, 17=13+3+1, 65=55+8+2.
  • Tan sólo un término de cada tres es par, uno de cada cuatro es múltiplo de 3, uno de cada cinco es múltiplo de 5, etc. Esto se puede generalizar, de forma que la sucesión de Fibonacci es periódica en las congruencias módulo m, para cualquier m.
  • La sucesión puede expresarse mediante otra fórmula explícita llamada forma de Binet (de Jacques Binet). Si \textstyle\alpha = \frac{1+\sqrt 5}{2} y \textstyle\beta = \frac{1-\sqrt 5}{2}, entonces
f_n=\frac{\alpha^n-\beta^n}{\alpha-\beta} y f_n\approx\frac{\alpha^n}{\sqrt 5}\,
  • Cada número de Fibonacci es el promedio del término que se encuentra dos posiciones antes y el término que se encuentra una posición después. Es decir
f_n=\frac{f_{n-2}+f_{n+1}}2
  • Lo anterior también puede expresarse así: calcular el siguiente número a uno dado es 2 veces éste número menos el número 2 posiciones más atrás.
f_{n+1}= f_{n} * 2 - f_{n-2}
  • La suma de los n primeros números es igual al número que ocupa la posición n+2 menos uno. Es decir
f_0+f_1+f_2+\cdots+f_n=f_{n+2}-1
  • Otras identidades interesantes incluyen las siguientes:
f_0-f_1+f_2-\cdots+(-1)^nf_n=(-1)^nf_{n-1}-1

f_1+f_3+f_5+\cdots+f_{2n-1}=f_{2n}

f_0+f_2+f_4+\cdots+f_{2n}=f_{2n+1}-1

f_0^2+f_1^2+f_2^2+\cdots+f_n^2=f_nf_{n+1}

f_1f_2+f_2f_3+f_3f_4+\cdots+f_{2n-1}f_{2n}=f_{2n}^2

f_1f_2+f_2f_3+f_3f_4+\cdots+f_{2n}f_{2n+1}=f_{2n+1}^2-1

Si k\geq1, entonces f_{n+k}=f_kf_{n+1}+f_{k-1}f_n\, para cualquier n\geq0

f_{n+1}f_{n-1}-f_n^2=(-1)^n (Identidad de Cassini)

f_{n+1}^2+f_n^2=f_{2n+1}

f_{n+2}^2-f_{n+1}^2=f_nf_{n+3}
Phi forma parte de una expresión de la sucesión de Fibonacci.

f_{n+2}^2-f_n^2=f_{2n+2}

f_{n+2}^3+f_{n+1}^3-f_n^3=f_{3n+3}

f_{n}=\varphi ^{n+1}-(f_{n+1})\varphi (con φ = número áureo)

\mathrm{mcd}\left(f_n,f_m\right)=f_{\mathrm{mcd}\left(n,m\right)}
Esto significa que f_n\, y f_{n+1}\, son primos relativos y que f_k\, divide exactamente a f_{nk}\,
  • Los números de Fibonacci aparecen al sumar las diagonales del triángulo de Pascal. Es decir que para cualquier n\geq0,
f_{n+1}=\sum_{j=0}^{\left\lfloor\frac n 2\right\rfloor}\begin{pmatrix}n-j\\j\end{pmatrix}
y más aún
f_{3n}=\sum_{j=0}^n\begin{pmatrix}n\\j\end{pmatrix}2^jf_j
  • Si f_p = a, tal que a es un número primo, entonces p también es un número primo, con una única excepción, f_4=3; 3 es un número primo, pero 4 no lo es.
  • La suma infinita de los términos de la sucesión \textstyle\frac{f_n}{10^n} es exactamente \textstyle\frac{10}{89}.
  • La suma de diez números Fibonacci consecutivos es siempre 11 veces superior al séptimo número de la serie.
  • El último dígito de cada número se repite periódicamente cada 60 números. Los dos últimos, cada 300; a partir de ahí, se repiten cada 15\times10^{n-1} números.

Generalización

Gráfica de la sucesión de Fibonacci extendida al campo de los números reales.
El concepto fundamental de la sucesión de Fibonacci es que cada elemento es la suma de los dos anteriores. En este sentido la sucesión puede expandirse al conjunto de los números enteros como \ldots,-8,5,-3,2,-1,1,0,1,1,2,3,5,8,\ldots de manera que la suma de cualesquiera dos números consecutivos es el inmediato siguiente. Para poder definir los índices negativos de la sucesión, se despeja f_{n-2}\, de la ecuación (3) de donde se obtiene
f_{n-2}=f_n-f_{n-1}\,
De esta manera, f_{-n}=f_n\, si n es impar y f_{-n}=-f_n\, si n es par.
La sucesión se puede expandir al campo de los números reales tomando la parte real de la fórmula explícita (ecuación (6)) cuando n es cualquier número real. La función resultante
f(x)=\frac{\varphi^x-\cos(\pi x)\varphi^{-x}}{\sqrt 5}
tiene las mismas características que la sucesión de Fibonacci:
  • f(0)=0~
  • f(1)=1~
  • f(x)=f(x-1)+f(x-2)~ para cualquier número real x
Una sucesión de Fibonacci generalizada es una sucesión g_0,g_1,g_2,\ldots donde
(9) g_n=g_{n-1}+g_{n-2}\, para n=2,3,4,5,\ldots
Es decir, cada elemento de una sucesión de Fibonacci generalizada es la suma de los dos anteriores, pero no necesariamente comienza en 0 y 1.
Una sucesión de fibonacci generalizada muy importante, es la formada por las potencias del número áureo.
 \varphi^n=\varphi^{n-1}+\varphi^{n-2}.
La importancia de esta sucesión reside en el hecho de que se puede expandir directamente al conjunto de los números reales.
 \varphi^x=\varphi^{x-1}+\varphi^{x-2}.
...y al de los complejos.
 \varphi^z=\varphi^{z-1}+\varphi^{z-2}.
Una característica notable es que, si g_0,g_1,g_2,\ldots es una sucesión de Fibonacci generalizada, entonces
g_n=f_{n-1}g_0+f_ng_1~
Por ejemplo, la ecuación (7) puede generalizarse a
\begin{bmatrix}0&1\\1&1\end{bmatrix}^n\begin{bmatrix}g_0\\g_1\end{bmatrix} = \begin{bmatrix}g_{n}\\g_{n+1}\end{bmatrix}
Esto significa que cualquier cálculo sobre una sucesión de Fibonacci generalizada se puede efectuar usando números de Fibonacci.

Sucesión de Lucas

Gráfica de la sucesión de Lucas extendida al campo de los números reales.
Un ejemplo de sucesión de Fibonacci generalizada es la sucesión de Lucas, descrita por las ecuaciones
  • l_0=2~
  • l_1=1~
  • l_n=l_{n-1}+l_{n-2}~ para n=2,3,4,5,\ldots
La sucesión de Lucas tiene una gran similitud con la sucesión de Fibonacci y comparte muchas de sus características. Algunas propiedades interesantes incluyen:
  • La proporción entre un número de Lucas y su sucesor inmediato se aproxima al número áureo. Es decir
\lim_{n\to\infty}\frac{l_{n+1}}{l_n}=\varphi
  • La fórmula explícita para la sucesión de Lucas es
l_n=\varphi^n+(-\varphi)^{-n}
  • La suma de los primeros n números de Lucas es el número que se encuentra en la posición n+2 menos uno. Es decir
l_0+l_1+l_2+\cdots+l_n=l_{n+2}-1
  • Cualquier fórmula que contenga un número de Lucas puede expresarse en términos de números de Fibonacci mediante la igualdad
l_n=f_{n-1}+f_{n+1}~
  • Cualquier fórmula que contenga un número de Fibonacci puede expresarse en términos de números de Lucas mediante la igualdad
f_n=\frac{l_{n-1}+l_{n+1}}{5}

Algoritmos de cálculo

Calculando f_7 usando el algoritmo 1.
Para calcular el n-ésimo elemento de la sucesión de Fibonacci existen varios algoritmos (métodos). La definición misma puede emplearse como uno, aquí expresado en pseudocódigo:
Algoritmo 1 Versión recursiva (Complejidad O(\varphi^n)\,)
función {\it fib}(n)\,
si n<2\, entonces
devuelve n\,
en otro caso
devuelve {\it fib}(n-1) + {\it fib}(n-2)\,
Usando técnicas de análisis de algoritmos es posible demostrar que, a pesar de su simplicidad, el algoritmo 1 requiere efectuar f_{n+1}-1 sumas para poder encontrar el resultado. Dado que la sucesión f_n crece tan rápido como \varphi^n, entonces el algoritmo está en el orden de \varphi^n. Es decir, que este algoritmo es muy lento. Por ejemplo, para calcular f_{50} este algoritmo requiere efectuar 20.365.011.073 sumas.
Para evitar hacer tantas cuentas, es común recurrir a una calculadora y utilizar la ecuación (6), sin embargo, dado que \varphi es un número irracional, la única manera de utilizar esta fórmula es utilizando una aproximación de \varphi y obteniendo en consecuencia un resultado aproximado pero incorrecto. Por ejemplo, si se usa una calculadora de 10 dígitos, entonces la fórmula anterior arroja como resultado f_{50}=1.258626903\times10^{10} aún cuando el resultado correcto es f_{50}=12586269025. Este error se hace cada vez más grande conforme crece n.
Un método más práctico evitaría calcular las mismas sumas más de una vez. Considerando un par (i,j)\, de números consecutivos de la sucesión de Fibonacci, el siguiente par de la sucesión es (j,i+j)\,, de esta manera se divisa un algoritmo donde sólo se requiere considerar dos números consecutivos de la sucesión de Fibonacci en cada paso. Este método es el que usaríamos normalmente para hacer el cálculo a lápiz y papel. El algoritmo se expresa en pseudocódigo como:
Algoritmo 2 Versión iterativa (Complejidad O(n)\,)
función {\it fib}(n)\,
i\gets 0
j\gets 1
para k\, desde 1\, hasta n\, hacer
t\gets i+j
i\gets j
j\gets t
devuelve j\,
Esta versión requiere efectuar sólo n sumas para calcular f_n, lo cual significa que este método es considerablemente más rápido que el algoritmo 1. Por ejemplo, el algoritmo 2 sólo se requiere efectuar 50 sumas para calcular f_{50}.
Calculando f_{100} usando el algoritmo 3.
Un algoritmo todavía más rápido se sigue partiendo de la ecuación (8). Utilizando leyes de exponentes es posible calcular x^n como
x^n=\begin{cases} x & \mbox{si }n=1 \\ \left(x^{\frac n 2}\right)^2 & \mbox{si }n\mbox{ es par} \\ x\times x^{n-1} & \mbox{si }n\mbox{ es impar} \end{cases}
De esta manera se divisa el algoritmo de tipo Divide y Vencerás donde sólo se requeriría hacer, aproximadamente, \log_2(n) multiplicaciones matriciales. Sin embargo, no es necesario almacenar los cuatro valores de cada matriz dado que cada una tiene la forma
\begin{bmatrix} a & b \\ b & a+b \end{bmatrix}
De esta manera, cada matriz queda completamente representada por los valores a y b, y su cuadrado se puede calcular como
\begin{bmatrix} a & b \\ b & a+b \end{bmatrix}^2 = 
\begin{bmatrix}a^2+b^2 & b(2a+b)\\
b(2a+b) & (a+b)^2+b^2\end{bmatrix}
Por lo tanto el algoritmo queda como sigue:
Algoritmo 3 Versión Divide y Vencerás (Complejidad O(\log(n))\,)
función {\it fib}(n)\,
si n\leq0 entonces
devuelve 0\,
i\gets n-1
(a,b) \gets (1,0)
(c,d) \gets (0,1)
mientras i > 0\, hacer
si i\, es impar entonces
(a,b) \gets (db + ca, d(b + a) + cb)
(c,d) \gets (c^2 + d^2, d(2c + d))
i\gets i\div 2
devuelve a+b\,
A pesar de lo engorroso que parezca, este algoritmo permite reducir enormemente el número de operaciones que se necesitan para calcular números de Fibonacci muy grandes. Por ejemplo, para calcular f_{100}, en vez de hacer las 573.147.844.013.817.084.100 sumas del algoritmo 1 o las 100 sumas con el algoritmo 2, el cálculo se reduce a tan sólo 9 multiplicaciones matriciales.

La sucesión de Fibonacci en la cultura popular

Sucesión de Fibonacci in art, Martina Schettina 2008, 40 x 40 cm
  • En el álbum Psychosis, And The Silence That Prevails de la banda de Death Metal Progresivo Mindpath se puede oír esta sucesión en varias ocasiones, como por ejemplo al comienzo de la canción Unleash Dissonant Beings
  • Jake uno de los protagonistas de la serie Touch utiliza esta sucesión para predecir el futuro.
  • En la pág. 61 de la novela de Dan Brown El código Da Vinci aparece una versión desordenada de los primeros ocho números de Fibonacci (56.9.65808735), que funcionan como una pista dejada por el conservador del museo del Louvre, Jacques Saunière.
  • En el álbum Lateralus de la banda estadounidense Tool, los patrones de la batería (Danny Carey) de la canción "Lateralus" siguen la Sucesión de Fibonacci del número 13 (número de pistas del disco): 1,1,2,3,5,8,13,1,1,2,3,5,8,13,1,1,...
  • En la miniserie Taken, la Sucesión de Fibonacci, como la Ecuación de Dios, es descubierta en los planes de los extraterrestres, en ejemplos como que sus naves tienen 5 tripulantes, sus manos 3 dedos y un pulgar, 1597 avistamientos ovnis en año anterior, se siguieron a 55 parejas para descubrir la híbrida humano-extraterrestre Allie, y que finalmente el número de abducidos era de 46368. Incidentalmente se habla en de un hombre que fue abducido 13 veces. 1, 3, 5, 13, 55, 1597, 46368, todos números Fibonacci.
  • En el filme de Darren Aronofsky π el orden del caos el judío Rabbi Cohen presenta la teoría en hebreo transcrito en números en la cual el personaje Max Cohen relaciona esta última teoría con la secuencia de Fibonacci llegando en conclusión que todo esta basado en la ley del orden y el caos.
  • En un lateral de la cúpula de la antigua sinagoga ahora convertida en el Museo Nazionale del Cinema, más conocida como Mole Antonelliana, en Torino (Italia), se puede observar una instalación luminosa de la sucesión de números de Fibonacci.
  • El Dr. Walter Bishop de la serie de televisión Fringe usa números de la serie de Fibonacci para las contraseñas de sus cajas de seguridad. Capítulo 10 de la primera temporada.
  • En el videojuego de Assassin's Creed II, en uno de los acertijos de los glifos, se debe usar la sucesión de Fibonacci para poder resolverlo.
  • En el juego móvil Doom RPG hay una habitación secreta que requiere de los primeros 7 dígitos de la sucesión de Fibonacci (11235813) para poder desbloquearla.
  • En el videojuego de Alice: Madness Returns, en una de las caracolas, se debe adivinar el siguiente número de una sucesión de Fibonacci.
  • En Criminal Minds un criminal deja una secuencia Fibonacci como pista para encontrar a sus próximas víctimas cautivas.
  • En la serie Touch del canal Fox, es mencionada cuando se explica la interconexión que hay entre todas y cada una de las personas en el mundo.
  • En la película 21 Blackjack se hace referencia a la sucesión de Fibonacci al aparecer en la tarta de cumpleaños del protagonista, quien cumple 21 años. En la tarta se leía "1,1,2,3,5,8,13" sabiendo que el siguiente numero de la sucesión es 21.

La sucesión de Fibonacci en la naturaleza

Los machos de una colmena de abejas tienen un árbol genealógico que cumple con esta sucesión. El hecho es que un zángano (1), el macho de la abeja, no tiene padre, pero sí que tiene una madre (1, 1), dos abuelos, que son los padres de la reina (1, 1, 2), tres bisabuelos, ya que el padre de la reina no tiene padre (1, 1, 2, 3), cinco tatarabuelos (1, 1, 2, 3, 5), ocho trastatarabuelos (1, 1, 2, 3, 5, 8) y así sucesivamente, cumpliendo con la sucesión de Fibonacci.

Dígitos en la sucesión de Fibonacci

Una de las curiosidades de dicha serie son los dígitos de sus elementos:
  • Empezando en 1 dígito y "terminando" en infinitos, cada valor de dígito es compartido por 4, 5 o 6 números de la serie. Siendo 6 solo en el caso de 1 dígito.
  • En los elementos de posición n, n10, n100,..., el número de dígitos aumenta en el mismo orden. Dando múltiples distintos para cada n.

Véase también

Referencias

  1. Laurence Sigler, Fibonacci's Liber Abaci, página 404
  2. Handbook of discrete and combinatorial mathematics, sección 3.1.2
  3. Fibonacci Quarterly

Bibliografía

  • Kolman, Bernard; Hill, David R. (2006). Álgebra Lineal. México: PEARSON EDUCACIÓN. ISBN 970-26-0696-9.
  • Johnsonbaugh, Richard (2005). Matemáticas Discretas. México: PEARSON EDUCACIÓN. ISBN 970-26-0637-3.
  • Brassard, G; Bratley, P. (1997). Fundamentos de Algoritmia. Madrid: PRETINCE HALL. ISBN 84-89660-00-X.
  • Kenneth, H. Rosen (2003). Discrete mathematics and its applications. McGraw Hill. ISBN 0-07-123374-1.
  • Kenneth H. Rosen; John G. Michaels (1999). Handbook of discrete and combinatorial mathematics. CRC. ISBN 0-8493-0149-1.
  • N. N. Vorobiov (1974). Números de Fibonacci. Editorial Mir, Moscú, Colección Lecciones Populares de Matemáticas. Traducción al español de Carlos Vega, catedrático de Matemáticas Superiores y candidato a doctor en ciencias físico-matemáticas.
  • A. I. Markushevich (1974; 1981). Sucesiones recurrentes. Editorial Mir, Moscú, Colección Lecciones Populares de Matemáticas. Traducción al español de Carlos Vega.
  • Luca Pacioli (1946). La Divina Proporción. Editorial Losada, Buenos Aires.

Enlaces externos

No comments:

Post a Comment